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KINETICS OF THE AGGREGATION OF A DILUTE, FINELY DISPERSE SYSTEM 

AT LOW SHEAR VELOCITIES 

Yu, A. Buevich and K. S. Kuvalkin UDC 541.182 

The formation of doublets of spherical particles in a shear stream due to Brownian 
motion is considered with allowance for their hydrodynamic interaction and the 
breakup of doublets with a low binding energy. 

The theological, thermo-, electro-, and magnetophysical properties of colloidal and other 
disperse systems depend very strongly on the processes of reversible and irreversible struc- 
ture formation taking place in the system. Therefore, a theore[ical investigation of such 
properties is impossible without a preliminary physical analysis both of the peculiarities of 
the occurrence of these processes under various conditions and of their influence on the 
observable properties of the system. The most important stage in the structure formation of 
a disperse system is the initial stage of its aggregation, i.e., the formation of doublets 
from single particles (singlets). Under certain conditions, doublets can subsequently grow 
through the capture of new singlets, up to the formation of small chains or round aggregates 
containing a large number of particles, which can take part as certain elementary units in 
the construction of more complicated branched structures. In dilute systems, as well as in 
systems with sufficiently weak interaction between particles, the formation just of doublets 
comprises the main observable form of structure formation, 

Brownian coagulation (or flocculation) is usually investigated on the basis of Smolukhov- 
skii's classical concepts. In doing this, the following factors are ignored or not correctly 
taken into account in the majority of reports: i) the hydrodynamic interaction between con- 
verging particles and the resulting decrease in the effective coefficient of relative Brownian 
diffusion, 2) the finiteness of the interparticle binding energy and the possibility of the 
breaku~ of doublets, and 3) the influence of the "macroscopic" (mean) motion of the system. 
Attempts to allow for the first factor were made in [i, 2], for the second in [3, 4], and for 
the third in [5]. All three factors are considered below on the example of a dilute, finely 
disperse system of single spherical particles having a central interaction potential and sus- 
pended in an incompressible liquid entrained in shear flow. 

The kinetics of the initial coagulation stage is determined by the velocity of convective 
interdiffusion of individual pairs of particies. Placing the origin of coordinates at the 
center of one of the particles, we write the Liouville equation controlling the evolution of 
the probability density ~(t, r) of finding the center of the second particle of a given pair 
near the point r at the time t, 

opl~t+ v.(pV)= o, (1) 

where the effective relative velocity of the centers of the particles can be represented in 
the form 

V.-.~. (bl~ + b~2 - -  bn - -  b~l)'F. ( 2 )  
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The total particle-interaction force F equals the sum of the forces due to, respectively, the 
harmonic interaction of particles with each other and with the external stream, the potential 
particle interaction, characterized by the potential u(r), and the "thermodynamic" force, 

which results in the same particle displacement as the real mean diffusional displacement. 
The latter force was first introduced by Einstein, and the corresponding formal apparatus was 

successfully applied recently by Batchelor [6] to the problem of the Brownian diffusion of 
hydrodynamically interacting particles. Thus, 

F = F  h + F ~ + F ~ ,  F~- -  du , F ~ ' - - k T  01np  ( 3 )  
dr 0r 

Introducing the tensor 

D = kT (b11 -I- b22 -- b12 -- b~1) (4) 

of effective coefficients of diffusion and the velocity U of relative motion of particle cen- 
ters due only to their hydrodynamic interaction and the motion of the system as a whole, from 

(1)-(4) we obtain the equation* 

Op/c)t + V.(pU) = V" [D ' (vP  -J- PVq~)], ~P = u/kT. (5) 

In the case of single spherical particles in a shear stream under consideration, we have 

t "2 + 1 - -  H , D o = - - - ,  
3a,tta (6) 

U = r . F + 2 E : C ,  F =-- E + f~ ~- const. 

There are detailed representations for the third-rank tensor C and the scalar functions G and 

H in [6, 7]. Only the form of the function G and the fact that as r § ~ the components of C 
tend toward zero as r -2 are important for the present work. The following asymptotic forms 
are valid for G (p = r/a): 

3 I 
G . - ~ 2 ( 9 - - 2 ) ,  9--~2; G ~  1 . . . .  + - -  9 -+0o .  (7)  

2p 9 ~ ' 

It is natural to convert to dimensionless variables in (5). Introducing 

r D F Ea 2 
T = E t ,  p =  - - ,  d = - - ,  ~ = e + c o =  - - ,  Br : - -  (8)  

a D O E Do 

and using the number density n of particles in-the vicinity of the selected particle instead 
of p, we obtain 

Br [On/Ox.+ (p.~? + 2e : C) .vn  J-  2 (e : (V  C)) nl = V' [d. iV n + nvq~)l. (9)  

Here differentiation with respect to the components of p is understood in the V operator. The 
Brenner number Br (as it is proposed to call it in [8]) has the meaning of the ordinary Peclet 
number, i.e., it characterizes the ratio between the convective and diffusional components of 

the total particle flux. 

Let the dependence of the dimensionless potential ~, which we take as central, on p have 
the form of the curve in Fig. i, i.e., let it be characterized by a single minimum ~ =-~m at 
p = 2 + e. We assume that ~ declines rather rapidly with an increase in p and satisfies all 
the conditions required for the existence of the integrals written below. For the rest, the 
function ~(p) is arbitrary, and, in particular, the absence of a potential barrier is permis- 
sible, So that this function asymptotically approaches the abscissa from below as p + ~, i.e., 
the potential well is infinitely wide. 

*Usually Eq. (5) is validated using the theory of random walks with a number of elementary 
steps which goes to infinity. Then (5) is adequate in the case when the temporal and linear 
scales of the field p(t, r) are longer than the time in which a particle undergoes a signifi- 
cant number of molecular impacts and the distance into which a significant number of ele- 
mentary displacements fit. The alternative course (corresponding to the derivation given 
above) appeals to a representative Gibbs ensemble of particle pairs and does not require the 
indicated restriction on the scale. In reality, aggregation in general and doublet formation 
in particular are mass processes, and the observable results actually correspond to averaging 
over such an ensemble. These considerations allow us to justify the use of the diffusion 
equation (5) at distances on the order of the scale of the function u(r), which can be small. 
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Strictly speaking, to calculate the rate constants of the processes of doublet formation 

and breakup one must solve the nonsteady equation (9) under certain initial and boundary con- 
ditions, the formulation of which presents considerable difficulties, since one must determine 
the probabilities of particle absorption and emission by the potential well and give a fully 

clear definition of just what two-particle configurations should be considered as doublets 
(the latter is not trivial in the case when the potential barrier in the curve of Fig. 1 is 

entirely absent). These difficulties can be avoided if one employs the fact that the be- 
havior of each pair of particles (regardless of whether they are combined into a doublet or 
not) does not depend on the state of ther pairs and that a representative Gibbs ensemble of 

such pairs exists. Then one can use the principle of detailed equilibrium and analyze the 
processes of doublet formation and breakup separately [4]. Here, if the characteristic time 

of the coagulation process far exceeds the time of relaxation of the concentragion field At 
ak/Do ~3/kT, which usually happens, it is permissible to use quasi-steady-state solutions 
of Eq. (9). 

We assign the boundary conditions for the doublet-formation problem as 

Iz§ p--~z; I~+=0, p------2-~. ( i0) 

The first condition in (10) is obvious, while the second can be obtained on the basis of the 

following considerations. Since it is assumed, from the meaning of the problem under consider- 
ation, that particles which come together necessarily form a doublet, we must impose the ab- 
sorption condition n + = 0 for a certain p = p, within the potential well, and the question 
comes down to the determination of a concrete value of p, corresponding to such a particle 
'~sink." By analyzing the limit Do § 0 (Br § ~), we find without difficulty that p, must cor- 

respond to a position of stable particle equilibrium in the ~(p) field in the absence of any 
random factors. Possible oscillations about this position due to thermal fluctuations have 
already been taken into account through the introduction of the thermodynamic force into (I) 
and the corresponding diffusional terms into (5) and (9) and must not, of course, be taken 
into account twice. 

Arguing entirely analogously, for the doublet-breakup problem we obtain the boundary 
condition 

a- - -~O,  p--~ oo; 4~a 3 j p k ~ - 6 ( p - - 2 - - ~ ) d p  = I ,  ( i l )  
2 

where ~(p) is a delta function. The second condition in (ii) essentially consists of a source 

condition, t 

Solving Eq. (9) with the boundary conditions (i0) or (Ii) is difficult in the general case, 

even when the time dependence is neglected. Here we consider only low shear velocities 
(Br << I), when the motion of the system results in only small corrections for the concentra- 
tion fields and the corresponding fluxes, which are established in a stationary disperse sys- 
tem. First of all, we find the fields n~(p) and n~(p) characterizing the situation for Br = 
0, i~ in a state of rest. With allowance for the spherical symmetry of the problems under 

consideration, after a simple calculation we obtain 

tit is asserted in [4] that for p, one can take any value of p corresponding to the potential 
well in Fig. i. Leaving aside the meaninglessness of this statement for potentials for which 

a potential barrier is altogether absent, we point out that in the region of small p, -- 2 the 
solutions of both these problems prove to be very sensitive to the choice of p,, which cannot 
be made arbitrarily, of course~ A variant of the internal condition for n-, according to which 
equality of the integral of n-(p) over the region of the potential well to unity was required, 
was analyzed in the same report. The latter is meaningless in the case when the well has an 
infinite extent (a" potential barrier is absent). Moreover, in an equilibrium situation the 
particle distribution density in the well ought to obey a Boltzmann distribution, while in an 
analysis of an essentially nonequilibrium diffusion process the randomness of the particle 
positions is taken into account through the diffusion equstion itself, and the coordinate cor- 
responding to the determinate position of stable equilibrium must figure as their "initial" 
coordinate. The analogy with random-walk problems is entirely obvious here, and it is clear 
that the position of the absorbing or emitting boundary must not depend on the intensity or 
other characteristics of the walks themselves. 
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Fig. i. Characteristic dependence of the 
dimensionless particle-interaction potential 

on the dimensionless distance between their 

centers. 

• s ~' e ~ e~ ~ 

2+e 2-b~ (12) 

e--~m--~ ~ 8~ 
n~ (p)= 4~aa(2 + e)2K - - ~  dp. 

p 

The corresponding fluxes in dimensional form are written as 

J~ 4~D~ , J~-~ e-~mD~ (13) 

K (2 § ~)~Ka ~ 

These fluxes are equal in magnitude to the number of doublets appearing or disappearing, as a 

result of spontaneous breakup, respectively, per unit time, normalized to the total number of 
singlets. 

If the kinetic equation for the singlet concentration in the system is introduced in the 
standard way in the form 

dnl/dt = -- an~ + 2~n2, nl ~ 2n2 =- no, (14) 

then the rate constants of the doublet formation and breakup processes for Br = 0 are defined 
as follows on the basis of (13): 

4n (2 + e) Doa e-~mD~ IV = (2 + e) K; (15) 
% =  W , ~ o =  ( 2 + ~ ) W a  ~ ' 

here the quantity W plays the role of the well-known "moderation factor" (for ~ = 0 and G = 1 
we have W = i). Even in the case of ~ ~ 0 this factor can differ significantly from unity if 

e is small: W ~ lln e I for g << i. The dependence of W on e is shown in Fig. 2a; the influence 
of W on n~(p) is illustrated by the curves in Fig. 2b. As follows from (14) and (15), how- 
ever, the equilibrium state of a system containing only singlets and doublets does not depend 

on the value of W. 

Equations (15) allow one to determine the average "lifetime" t' = I/B of a doublet , which 

depends essentially on the depth ~ of the potential well, and the characteristic time t" = 
i/anl of formation of a new doublet. The relation between these times characterizes the level 

of development of the aggregation process in a dilute disperse system. The main physical con- 
clusions about the influence of the quantity ~,,~ and other parameters on this process which 
follow from the above analysis are in agreement, on the whole, in a qualitative respect, with 

those obtained in [4]. 

We note that when the dependence of the size of the gap ea between particles corresponding 
to their stable equilibrium configuration on a is weak, the quantity s will grow while W will 
decrease with a decrease in particle size. The latter fact promotes an increase in the 

stability of the system when its degree of dispersion is stronger. According to the well- 
known theory of the aggregative stability of colloids, in which purely hydrodynamic "modera- 
tion" is ignored, a decrease in particle size promotes a drop in stability (due to the in- 
crease in Do, for example). From this it is clear that certain colloidal systems should reach 
maximum stability at a certain finite particle size, which is confirmed experimentally [9, 

lO] .  
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For nonzero but small Br it would seem natural to apply the perturbation method to the 
solution of both problems, as in the solution of one problem for the steady-state equation 

(9) in [7], i.e., seek corrections An+,-(p) ~ Br to the quantities in (12). It turns out, 
however, that problems for An +,- whose formulation follows from (9)-(11) have no solution at 
all, This is connected, as in the case of the well-known Stokes and Whitehead paradoxes, 

with the uneven validity of direct expansions with respect to powers of Br of the solutions 
sought in the region of 2 + s~p < - due to the infinite extent of this region. (Far from 
an isolated particle there is essentially no Br, while the number Brp = Er2/Do = p2Br can be 
as large as desired,) 

Therefore, we use the method of joined asymptotic expansions [ii] here, writing the inner 
asymptotic expansions of the sought functions satisfying the steady-state equation (9) in the 
form 

2 ~+'-f9), ~n~"(p)-~ f~'-Tz~'-/P)" Br~olim /~§ =d,'- (16) 

where fi is a certain system of comparison functions. The boundary conditions for the quanti- 
ties in (16) follow from the internal conditions in (I0) and (Ii): 

~;' =o, ~ 2 + ~ ,  i ~ l .  (17) 
In the outer region we introduce the new coordinate ~ = p B~r; then the steady-state ana- 

log of Eq. (9) takes the form 

(~.y + 2e : C).vN + 2(e : (v.C)) N = v . [ d . ( v N  + NV~)], (18) 

with differentiation with respect to ~ being understood in V, while d and C are considered as 
functions of ~ depending on Br as on a parameter. The outer asymptotic expansions are written 
as 

: + (D, ~=I Br-0 F~ --0, (19) 

where F i is a new system of comparison functions; N t = nz, N~ = 0. On the coefficients in 
(19) we impose only the external boundary conditions 

N~'---*0, ~-+oo, i>~l. (20) 
In addition, we need to satisfy the joinability conditions in the region of intermediate p, 

which define f~,- and F~,- [ii], 
1 l 

For the purposes of this work it is enough to find fT'- and n~,- and n~'-(p), i.e., only 
the first terms of the series in (16), for which we must determine Ft,- and N+,-(~), i.e., 

1 

the first terms of the series in (19). The quantity N+,-({) satisfies, obviously, the equa- 
. 

tion which follows from (18) as Br § 0 and the condztlons (20). Since the tensor d is 

reduced to the unit tensor while C is reduced to the null tensor as Br § 0, and ~(p) = ~(~/ 
B~r) § 0 as well, from (18) we obtain 

(%.y).vN~ : V.(vN~ + NIV~) = AN~, (21) 

with the discarded terms having the order of smallness B~r or higher. This equation describes 
steady-state convective diffusion in an undisturbed stream characterized by a uniform tensor 
of velocity derivatives with respect to the y coordinates. It is easy to see that a full solu- 
tion of (21) satisfying the conditions (20) is not needed for joining the outer with the inner 
expansion: One needs only two leading terms of the asymptotic expansion of the outer solution 
as ~ + 0. 
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Solving the problem (20), (21) for an arbitrary ~ is also very laborious. Here we con- 

sider as an example only simple shear flow (Pij = E6it~j2), for which Eq. (21) was investi- 

gated in detail in [12, 13]. As ~ § 0 we have [13] 

a , a = 0 , 2 5 6 8 .  (22)  

J o i n i n g  t h e  l e a d i n g  t e r m s  i n  (22)  w i t h  t h e  c o r r e s p o n d i n g  i n n e r  s o l u t i o n s  .(12) u s i n g  t h e  
u s u a l  p r o c e d u r e s  [ 1 1 ] ,  we o b t a i n  

lZ 1 s 

f ~  = - -  ] / g 7  - R - ,  f T =  ~gTr  4aaa(2 + e)2K (23)  

The f a c t  t h a t  t he  f i r s t  t e r m s  o f  t h e  s e r i e s  (19)  h a v e  t h e  o r d e r  Bg~r j u s t i f i e s  t h e  a p o s t e r i o r i  
u s e  o f  Eq, (21)  t o  o b t a i n  ( 2 2 ) ,  

From (23) i t  a l s o  becomes  c l e a r  t h a t  t h e  q u a n t i t i e s  f + ' -  i n  (16)  a l s o  h a v e  t h e  o r d e r  / B r ,  
+ , -  

i . e .  t h a t  n + , - ( 0 )  mus t  s a t i s f y  t h e  same Eq. (9) w i t h  t h e  k e f t  s i d e  d i s c a r d e d ,  as  n o (p) 
' 1 ' " 

From this it is easy, using the conditions (17), to obtain 

,o 

, i ~ s , z? , - (9 )  = [ ? , - e - ~  O G9 2 d9. (24)  
2 -r'e 

Joining (24) with second-order terms in (22), we obtain 

{ ? ' -  -- a F ? ' - ,  ( 25 )  
K 

w h i c h  c o m p l e t e s  t h e  s o l u t i o n  o f  t h e  p r o b l e m s  o f  d o u b l e t  f o r m a t i o n  and d e s t r u c t i o n  i n  a f i n e l y  
d i s p e r s e  s y s t e m  i n  a s i m p l e  s h e a r  s t r e a m  f o r m u l a t e d  h e r e .  I n  p a r t i c u l a r ,  f rom ( 1 2 ) ,  ( 1 6 ) ,  and 
( 2 3 ) - ( 2 5 )  we h a v e  t h e  f o l l o w i n g  e x p r e s s i o n s  f o r  t h e  i n n e r  a s y m p t o t i c  e x p a n s i o n s  t o  w i t h i n  
t e r m s  of  o r d e r  / B r :  

P 

2q-e 
(26) 

0 

-,-TAT- ap t  . n - ( p ) ~ 4 a ( 2 +  e)ZKa a K - -  1~- V~B-r - ~ -  op j 
2+e  

The f i r s t  e q u a t i o n  i n  (26) w i t h  e = 0 was o b t a i n e d  e a r l i e r  i n  [ 5 ] ,  w h e r e  i t  h a s  m e a n i n g  i n  t h e  
c a s e  when t h e r e  e x i s t s  an  i n t e g r a l  d e f i n i n g  t h e  q u a n t i t y  K i n  ( 1 2 ) ,  f o r  w h i c h  ~ ( p )  m u s t  s a t i s f y  
t he  l i m i t i n g  c o n d i t i o n  as  p § 2 f o r m u l a t e d  i n  [ 5 ] .  

A f t e r  c a l c u l a t i o n s  u s i n g  (2a), we h a v e  t h e  f o l l o w i n g  r e p r e s e n t a t i o n s  f o r  t h e  c o r r e c t i o n s  
AJ + , -  t o  t h e  f l u x e s  J + ' -  i n  ( 1 3 ) :  

o 
4so oe-m~ } F ~ -  Do 

AJ + = K---T-- V-~Doanx ,  AJ -  = (2 + e)zK z a - - - T -  (27)  

The corresponding corrections to the rate constants of the doublet formation and breakup pro- 
cesses defined in (15) are expressed as 

~e-~m Do 
4~a(2 + ~)~ V-B-r-Dos, A~ -- V-B7  (28)  As - WZ W2 a z 

The s i n g l e t  and  d o u b l e t  c o n c e n t r a t i o n s  i n  a d i l u t e  s y s t e m  w h i c h  i s  i n  an e q u i l i b r i u m  
state are fully determined, as is easy to see, by the ratio ~/~, for which 

__~. = % + A ~  ---- % (1 + A~ A ~ ) _ _  % (29) 

An a n a l o g o u s  p r o b l e m  i n  a m a t h e m a t i c a l  r e s p e c t  was i n v e s t i g a t e d  i n  [14]  i n  t h e  c a s e  o f  
D = D I ,  C = 0 ,  and u = 0 i n  c o n n e c t i o n  w i t h  t h e  p r o b l e m  o f  h e a t  o r  mass  t r a n s f e r  f r o m  a s p h e r -  
i c a l  particle in a simple shear stream. 

From (27) and (28) it is seen that the imposition of external shear flow, as one would 
expect, results in a certain increase in both the rate of formation of doublets and their 
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breakup rate~ As follows from (29), however, this does not affect the characteristics of the 
equilibrium state reached after a long time following the start of the coagulation process. 
This conclusion pertains only to the situation when Br << i, and physically it means that the 
variation of these characteristics due to motion of the system has a higher order of smallness 
than /Br. To find this variation, one must calculate the following series terms in (16), 
w~ich is a considerably more complicated task than that under consideration: the fields 
n2'-(p) will no longer be isotropic, while the fields N~'-(p) will depend on the disturbances 
introduced into the average flow by the isolated particle with the center at the point r = 0. 

Concrete results on the influence of the external flow on the aggregation process were 
obtained above only for a simple shear stream, but they are not qualitatively altered for 
other types of streams. It is clear from the above analysis that corrections of the type 
(28) to the streams (13) which occur in a state of rest can also be obtained easily for any 
other flow if one is able to solve the problem of convective diffusion from a point source in 
this flow undisturbed by the source itself, and to construct the asymptotic forms of the 
fields ~-(~) as ~ § 0 which are needed for determining n~,-(p). Such a problem has recently 
been solved for many important types of shear streams and for plane Poiseuille flow [15, 16], 
and an elegant method of calculating the diffusion fluxes without a detailed analysis of the 
concentration fields was also given in [15]. Therefore, obtaining equations replacing Eqs. 
(26)-(29) for such flows offers no fundamental difficulties. 

In conclusion, we emphasiae that we made no limiting assumptions above concerning the 
form of the particle-interaction potential except for the most general ones. Therefore, 
the results obtained are equally applicable to the analysis of processes of fast and slow, 
reversible and irreversible aggregation at primary and secondary minima. 

NOTATION 

a, particle radius; 5ij, mobility tensors; C, tensor introduced in (6); D, d, dimen- 
sional and dimensionless diffusion tensors; Do, coefficient of relative Brownian motion; E, 
characteristic value of shear velocity; E, e, dimensional and dimensionless deformation-rate 
tensors; F, total particle-interaction force; fi, Fi, coefficients in <16) and (19): G, H, 
functions introduced in (6); K, constant defined in (12); k, Boltzmann constant; I, unit 
tensor; J, particle flux; N, n, external and internal concentration fields; no, nl, n2, 
initial number concentration of particles and concentrations of singlets and doublets, 
respectively~ p~ probability density; r, dimensional coordinate vector; T, Kelvin tempera- 
ture; t, time; u, interaction potential; V, relative velocity of the centers of two particles; 
U, relative velocity due only to the hydrodynamic interaction between particles and the ex- 
ternal stream; W, moderation factor; e, ~, rate constants of doublet formation and breakup 
processes; F, y, dimensional and dimensionless tensors of velocity derivatives with respect 
to the coordinates; ~, dimensionless distance between interacting particles, corresponding to 
the minimum of the potential; ~, viscosity of the liquid; ~, p, external and internal co- 
ordinate vectors; o, constant introduced in (22); T, dimensionless time; ~, dimensionless 
interaction potential; ~m, dimensionless depth of potential well; ~, ~, dimensional and dimen- 
sionless vorticity tensors; Br, Brenner number, defined in (8). Indices: + and - pertain to 
problems of doublet formation and breakup, respectively. 
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CONTROLLING DEPOSITION OF A SUBSTANCE ONTO THE INNER SURFACE 

OF A CYLINDRICAL CHANNEL 

V. V. Levdanskii UDC 536.422.4 

The problem of material deposition on the inner surface of a channel with free- 
molecular gas flow is considered. 

Deposition of material from the gaseous phase is one of the basic methods of producing 
thin layers of material [i]~ This method permits production of layers with thickness varying 
according to a specified rule. At sufficiently low pressures of the vapors of the material to 
be deposited, a free-molecular flow regime is created in the gas, and the thickness of the 
layer deposited is dependent only on system geometry~ the molecular flux incident on the sur- 
face, and the interaction conditions between gas molecules and solid surface. 

At the present time external problems have been studied thoroughly. In these cases, the 
deposition process can be controlled either by changing the position of the material source 
relative to the substrate or by changing the geometric parameters of the source itself. More 
complicated and less well studied are internal deposition problems. Thus, for example, in the 
case of deposition of a thin layer of material on the inner surface of a cylindrical channel, 
where the source of material to be deposited lies outside the channel, the deposition process 
can be controlled only by varying the gas pressure at the channel ends and the temperature 
distribution along the channel. 

In the present study we will examine questions of deposition of material layers on the 
inner surface of a cylindrical channel for a specified material deposition rule along the chan- 
nel at arbitrary values of the molecular condensation (adhesion) coefficient ~. 

Let it be required to deposit a thin layer of condensate along the inner surface of a 
cylindrical channel, with the layer thickness varying along the channel length by a specified 
rule. Naturally, the rule for change in layer thickness along the channel must determine the 
resulting molecular flux into the condensate. 

We will make some simplifying assumptions. We assume that at the start of the process the 
entire inner surface is coated by a layer of condensate (i.e., we will not consider the pro- 
cess of condensate formation on the bare substrate). The condensate formed is assumed solid. 
We will consider the problem in the quasistationary approximation. We assume that the growing 
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